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Abstract The direct method for the construction of local conservation laws of partial differential equations (PDE)
is a systematic method applicable to a wide class of PDE systems (S. Anco and G. Bluman, Eur J Appl Math 13:567–
585, 2002). According to the direct method one seeks multipliers, such that the linear combination of PDEs of a
given system with these multipliers yields a divergence expression. Once local-conservation-law multipliers have
been found, one needs to reconstruct the fluxes of the conservation law. In this review paper, common methods of
flux computation are discussed, compared, and illustrated by examples. An implementation of these methods in
symbolic software is also presented.
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1 Introduction

Local conservation laws of systems of partial differential equations (PDE), i.e., divergence expressions vanishing
on solutions of a given PDE system, arise in a wide variety of applications and contexts. They often serve as math-
ematical expressions for fundamental physical principles, such as conservation of mass, momentum, charge, and
energy. Conservation laws of time-dependent bounded systems describe conserved quantities. Conservation laws
of ordinary differential equations (ODE) yield first integrals.

Conservation laws are widely used in PDE analysis, in particular, regarding studies of existence, uniqueness and
stability of solutions of nonlinear PDEs (e.g., [1–3]).

Another important area of application of conservation laws is the development and use of numerical methods.
In particular, knowledge of conservation laws of a PDE system of interest enables one to draw from a wide variety
of robust and efficient numerical schemes which have been derived in the last decades, including finite-volume,
finite-element, and discontinuous Galerkin methods; see, e.g., [4, Chap. II], [5, Chap. IV].

In addition, local conservation laws of a given PDE system are used to introduce nonlocal (potential) variables
and thus construct PDE systems nonlocally related to a given one, with the same solution set. The related framework
of nonlocally related systems (e.g., [6–11]) has yielded many new results in recent years.
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When a PDE system has an infinite set of local conservation laws involving arbitrary functions, it can sometimes
be mapped into a linear PDE system by an invertible transformation, which can be derived explicitly when it exists
[12]. An infinite countable set of local conservation laws is often associated with integrability.

In the current paper, we consider local divergence-type conservation laws. Other types of conservation laws (such
as lower-degree, e.g., curl-type, and nonlocal conservation laws) also arise in applications.

We now turn to the question of the derivation of conservation laws. Many classical conservation laws have
been found by ad hoc methods. One of the most well-known systematic methods is due to Emmy Noether, who
demonstrated that for self-adjoint (variational) PDE systems, conservation laws arise from variational symmetries,
i.e., symmetries that preserve the action integral [13]. However, the applicability of Noether’s theorem is severely
limited, since the majority of PDE systems arising in applications are not self-adjoint [14].

An interesting review devoted to comparison of several methods of computation of conservation laws is found
in [15].

A more general systematic method of constructing local conservation laws called the direct method was sug-
gested in [16,17] (see also [18]). We review this method and the underlying theory in Sect. 3 of the current paper.
According to this method, one seeks a set of local multipliers (also called factors or characteristics) depending on
independent and dependent variables of a given PDE system and derivatives of dependent variables up to some
fixed order, such that a linear combination of the PDEs of the system system taken with these multipliers yields a
divergence expression. Families of multipliers that yield conservation laws are found from determining equations
that follow from Euler differential operators. After finding sets of local conservation-law multipliers, one needs to
derive expressions for the corresponding conservation-law fluxes.

The goal of this paper is to review and illustrate available methods of flux construction (Sect. 4). We start from
a direct (“brute force”) method (Sect. 4.1) that converts a conservation law directly into the set of determining
equations (linear PDEs) for the unknown fluxes. This method is easy to apply in the case of simple conservation
laws, including those involving arbitrary functions.

The second and the third methods (Sects. 4.2 and 4.3) employ integral formulas, related to homotopy operators,
to compute the fluxes. These formulas can be used to produce closed-form flux expressions for rather complicated
forms of conservation laws, except for the cases when the conservation law involves arbitrary functions. The first
integral formula is presented following [19]. The second integral formula initially appeared in [17], but is re-derived
in the present paper in a different form, which is symmetric with respect to independent variables, and is simpler
for practical computations and software implementation.

The fourth method [20] (Sect. 4.4) applies to scaling-homogeneous conservation laws of scaling-invariant PDE
systems, which often occur in applications. This method allows one to find fluxes of conservation laws through a
rather simple formula involving no integration. Another appropriate reference for the above four methods is [21,
Sect. 1.3].

In Sect. 5, we briefly compare and discuss the four flux computation methods presented in the current paper.
Finally, in Sect. 6, we present a symbolic software implementation of the direct method of conservation-law

construction and the four flux-computation methods in the symbolic package GeM of Maple [22], and illustrate
these methods with examples. There also exist other symbolic software packages that implement the direct method,
as well as other methods for computing conservation laws; see [19,23–26] and references therein.

2 Notation and definitions

2.1 General definitions

Consider a general system of N partial differential equations of order k with n independent variables x =
(x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x)), denoted by

Rσ [u] = Rσ (x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N . (2.1)
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Here partial derivatives are denoted by uµ
i = ∂uµ(x)

∂xi ;

∂u ≡ ∂1u =
(

u1
1(x), . . . , u1

n(x), . . . , um
1 (x), . . . , um

n (x)
)

denotes the set of all first-order partial derivatives;

∂ pu =
{

uµ
i1...i p

| µ = 1, . . . , m; i1, . . . , i p = 1, . . . , n
}

=
{

∂ puµ(x)

∂xi1 . . . ∂xi p
| µ = 1, . . . , m; i1, . . . , i p = 1, . . . , n

}

denotes the set of all partial derivatives of order p.
Here the notation “ f [u]” means that f is a function of one or more independent variables x , dependent variables

u, and possibly derivatives of dependent variables, up to some fixed order, i.e.,

f [u] ≡ f (x, u, ∂u, . . . , ∂ lu), l ≥ 0.

Definition 1 The given PDE system (2.1) is written in a solved form with respect to some leading derivatives, if

Rσ [u] = u jσ
iσ,1...iσ,s

− Gσ (x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N , (2.2)

where s ≤ k, 1 ≤ jσ ≤ m, 1 ≤ iσ,1, . . . , iσ,s ≤ n for all σ = 1, . . . , N . In (2.2), {u jσ
iσ,1...iσ,s

} is a set of N
linearly independent sth order leading partial derivatives, with the property that none of them or their differential
consequences appears in {Gσ [u]}N

σ=1. (For example, for dynamical PDE systems, time derivatives yield a natural
set of leading derivatives.)

Definition 2 A PDE system (2.1) is in Cauchy–Kovalevskaya form with respect to an independent variable x j , if
the system is in the solved form for the highest derivative of each dependent variable with respect to x j , i.e.,

∂s(σ )

∂(x j )s(σ )
uσ = Gσ (x, u, ∂u, . . . , ∂ku), 1 ≤ s(σ ) ≤ k, σ = 1, . . . , m, (2.3)

where all derivatives with respect to x j appearing in the right-hand side of each PDE of (2.3) are of lower order
than those appearing on the left-hand side.

Definition 3 A PDE system (2.1) admits a Cauchy–Kovalevskaya form if it can be written in Cauchy–Kovalevskaya
form (2.3) with respect to some independent variable (after a point (contact) transformation if necessary).

A PDE system can admit a Cauchy–Kovalevskaya form only if its number of dependent variables equals the number
of PDEs in the system, i.e., N = m. Many PDE systems arising in applications admit a Cauchy–Kovalevskaya form
with respect to one or more of its independent variables. PDE systems that do not admit a Cauchy–Kovalevskaya
form are typically PDE systems with differential constraints, such as Maxwell’s equations.

Definition 4 The total derivative operators with respect to independent variables are given by

Di = ∂

∂xi
+ uµ

i
∂

∂uµ
+ uµ

i i1

∂

∂uµ
i1

+ uµ
i i1i2

∂

∂uµ
i1i2

+ · · · , i = 1, . . . , n. (2.4)

In (2.4) and below, summation over repeated indices is assumed.

Definition 5 The differential Euler operator with respect to a function U (x) is defined by

EU = ∂

∂U
− Di

∂

∂Ui
+ · · · + (−1)sDi1 . . . Dis

∂

∂Ui1...is

+ · · · . (2.5)
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2.2 Local conservation laws

Definition 6 A local conservation law of PDE system (2.1) is a divergence expression

div �[u] ≡ Di�
i [u] ≡ D1�

1[u] + · · · + Dn�n[u] = 0 (2.6)

holding for all solutions of PDE system (2.1). In (2.6), �i [u] = �i (x, u, ∂u, . . . , ∂r u), i = 1, . . . , n are called
the fluxes of the conservation law, and the highest order derivative (r ) present in the fluxes �i [u] is called the
(differential) order of a conservation law.

If one of the independent variables of the PDE system (2.6) is time t , the conservation law (2.6) takes the form

Dt�[u] + div �[u] = 0, (2.7)

where div �[u] = Di�
i [u] = D1�

1[u] + · · · + Dn−1�
n−1[u] is a spatial divergence, and x = (x1, . . . , xn−1) are

n − 1 spatial variables. Here �[u] is referred to as a density, and �i [u] as spatial fluxes of the conservation law
(2.7).

Definition 7 A local conservation law (2.6) of the PDE system (2.1) is trivial if its fluxes are of the form �i [u] =
Mi [u]+ Hi [u], where Mi [u] vanishes on the solutions of the system (2.1), and Di H i [u] ≡ 0 is a trivial divergence.

Definition 8 Two local conservation laws (2.1) are equivalent if they differ by a trivial conservation law. Similarly,
a set of local conservation laws of the form (2.1) is linearly dependent if its nontrivial linear combination (i.e., a
linear combination with coefficients which are not all equal to zero) yields a trivial conservation law.

3 Direct method for constructing conservation laws

For a given PDE system, one is interested in finding its nontrivial linearly independent local conservation laws.
We now outline a systematic and generally applicable method for constructing local conservation laws of PDE

systems, called the direct method [16,17].

3.1 Multipliers. The sequence of the direct method

Consider a set of multipliers {�σ [U ]}N
σ=1 = {�σ (x, U, ∂U, . . . , ∂ lU )}N

σ=1 which, taken as factors in the linear
combination of equations of the PDE system (2.1), yield a divergence expression

�σ [U ]Rσ [U ] ≡ Di�
i [U ], (3.1)

which holds for arbitrary functions U (x). Then on the solutions U (x) = u(x) of the PDE system (2.1), one has a
local conservation law

�σ [u]Rσ [u] = Di�
i [u] = 0, (3.2)

provided that each multiplier is non-singular. [A multiplier �σ [U ] is called singular if it is a singular function when
computed on solutions U (x) = u(x) of a given PDE system (2.1) (e.g., �σ [U ] = F[U ]/Rσ [U ]). In practice, one is
interested only in non-singular sets of multipliers, since singular multipliers can yield arbitrary divergence expres-
sions which are not conservation laws of the given PDE system. For example, taking �σ1 [U ] = div �[U ]/Rσ1[U ]
and �σ �=σ1 [U ] = 0, one obtains �σ [U ]Rσ [U ] = div �[U ], which does not yield a conservation law of the PDE
system (2.1).] To seek sets of multipliers {�σ [U ]}N

σ=1 that yield conservation laws (3.2) of a given PDE system
(2.1), one uses the following fundamental property of Euler operators (2.5).
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Theorem 1 Let x = (x1, . . . , xn) and U (x) = (U 1(x), . . . , U m(x)). An expression f [U ] = f (x, U, ∂U, . . . , ∂ l

U ), l ≥ 0, is annihilated by all Euler operators EU j , i.e.,

EU j f [U ] ≡ 0, j = 1, . . . , m, (3.3)

if and only if f [U ] is a divergence expression

f [U ] = Di�
i [U ],

for some set of fluxes {�i [U ]}n
i=1 = {�i (x, U, ∂U, . . . , ∂r U )}n

i=1.

Corollary 1 A set of non-singular multipliers {�σ (x, U, ∂U, . . . , ∂ lU )}N
σ=1 yields a local conservation law for

the PDE system (2.1) if and only if

EU j (�σ (x, U, ∂U, . . . , ∂ lU )Rσ (x, U, ∂U, . . . , ∂kU )) = 0, j = 1, . . . , m, (3.4)

hold for arbitrary functions U (x).

3.1.1 The sequence of the direct method

1. For a given PDE system (2.1), seek multipliers of the form {�σ (x, U, ∂U, . . . , ∂ lU )}N
σ=1, for some specified

order l. Choose the dependence of multipliers on their arguments so that singular multipliers do not arise.
2. Solve the set of determining (3.4) for arbitrary U (x) to find all such sets of multipliers.
3. Find the corresponding fluxes �i [U ] = �i (x, U, ∂U, . . . , ∂r U ) satisfying the identity (3.1).
4. Each set of fluxes and multipliers yields a local conservation law

Di�
i (x, u, ∂u, . . . , ∂r u) = 0,

holding for all solutions u(x) of the given PDE system (2.1).

In practical computations, when this is possible, it is convenient to write the given PDE system (2.1) in a solved
form (2.2) with respect to some leading derivatives. Then in Step 1 of the direct method, one can easily avoid
singular conservation-law multipliers by excluding such leading derivatives and their differential consequences
from the multiplier dependence.

3.2 Completeness of the direct method

The direct method outlined above can be applied to a wide class of PDE systems. Indeed, the only requirement is
the existence of all derivatives that arise in the determining equations given by (3.4).

However, for a given PDE system, it is often important to know whether or not the direct method can yield all
its nontrivial local conservation laws (at least up to some fixed order). Conversely, under what conditions does a
set of local multipliers yield only nontrivial local conservation laws? We now outline the results related to these
questions.

When a given PDE system is written in a solved form, one can show that the application of the direct method
with multipliers of sufficiently general dependence yields all local conservation laws of the given PDE system of
any fixed order l. In particular, the following theorem holds [21]:

Theorem 2 For each local conservation law Di�
i [u] = 0 of a PDE system (2.1) written in a solved form (2.2),

there exists an equivalent local conservation law Di �̃
i [u] = 0 which can be expressed in a characteristic form,

Di �̃
i [U ] = �̃σ [U ]

(
U jσ

i(σ,1)...i(σ,s)
− Gσ [U ]

)
, (3.5)

in terms of a set of non-singular local multipliers {�̃σ [U ]}N
σ=1, with fluxes that contain no leading derivatives

U jσ
iσ,1...iσ,s

nor their differential consequences.
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However, even when a PDE system is written in a solved form (2.2), the correspondence between equivalence
classes of conservation laws and sets of conservation law multipliers might not be one-to-one. The following theorem
holds [17]:

Theorem 3 Suppose a PDE system (2.1) admits a Cauchy–Kovalevskaya form (2.3). Then all of its non-trivial (up
to equivalence) local conservation laws arise from multipliers. Moreover, there is a one-to-one correspondence
between equivalence classes of conservation laws and sets of conservation-law multipliers {�σ [U ]}N

σ=1, if the
multipliers do not involve derivatives with respect to x j .

4 Computation of fluxes of conservation laws

Consider a set of non-singular multipliers {�σ [U ] = �σ (x, U, ∂U, . . . , ∂ lU )}N
σ=1 that yields a divergence expres-

sion (3.1) for a PDE system (2.1) for some set of fluxes {�i [U ] = �i (x, U, ∂U, . . . , ∂r U )}n
i=1. Hence one has a

local conservation law (3.2) holding on the solutions U (x) = u(x) of the PDE system (2.1).
Given a set of conservation-law multipliers, the problem of finding the fluxes {�i [U ]}n

i=1 is formally a problem of
inversion of the divergence differential operator. Even modulo trivial conservation laws of the first type (Definition
7, Hi [u] ≡ 0), a set of multipliers defines an equivalence class of conservation laws, up to free constants and
arbitrary functions. For example, suppose in a three-dimensional space (x, y, z)(n = 3) the fluxes of a conservation
law

N∑
σ=1

�σ [U ]Rσ [U ] ≡
3∑

i=1

Di�
i [U ]

are given by

�[U ] = (�1[U ],�2[U ],�3[U ]) = div−1

(
3∑

σ=1

�σ [U ]Rσ [U ]
)

.

Then the expression

̂�[U ] = �[U ] + curl K,

for an arbitrary smooth vector field K, also yields fluxes of an equivalent conservation law. From a practical point
of view, for a given set of multipliers, it is sufficient to find any one set of corresponding fluxes.

We now consider different ways of finding fluxes of conservation laws from known multipliers.

4.1 The direct method of flux computation

For conservation laws arising from simple forms of multipliers, the fluxes are most easily found by direct matching
of the two sides of (3.1) and subsequent integration by parts.

If integration by parts is not obvious, one can assume a sufficiently general dependence for the fluxes �i [U ], and
look for a particular solution of PDEs (3.1) for the fluxes within such an ansatz. Here it is important to note that,
if the maximal order of derivatives of U (x) present in the multipliers is l, and the maximal order in the equations
Rσ [U ] appearing in the linear combination (3.1) is k, then, without loss of generality (i.e., up to trivial conservation
laws) one may assume that the fluxes are of the form �i [U ] = �i (x, U, ∂U, . . . , ∂r U ), where r = max(l, k)

[27]. Using the independence of �i [U ] from higher derivatives, one can subsequently split PDEs (3.1) into a set of
simpler determining equations.

We now consider an example of a direct flux computation. Further examples are found in Sect. 6.
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4.1.1 Example

As an example, consider the nonlinear wave equation,

R[u] = utt − (c2(u)ux )x = 0, (4.1)

for arbitrary wave speed c(u). For simplicity, consider multipliers of the form �[U ] = �(x, t, U ). The determining
equations (3.3) yield the solution �(x, t) = C1 + C2x + C3t + C4xt , where C1, . . . , C4 are arbitrary constants.
As a result, one obtains four linearly independent conservation laws, arising from the multipliers �(1) = 1,�(2) =
x,�(3) = t,�(4) = xt. We now determine the corresponding density-flux pairs.

For the multiplier �(1) = 1, one obviously has

�(1)[U ]R[U ] ≡ Dt (Ut ) − Dx (c
2(U )Ux ), (4.2)

since PDE (4.1) is in divergence form as it stands:

Dt (ut ) − Dx (c
2(u)ux ) = 0. (4.3)

For the multiplier �(2) = x , one can determine the flux and density using integration by parts:

�(2)[U ]R[U ] ≡ x(Dt (Ut ) − Dx (c2(U )Ux )) ≡ Dt (xUt ) − Dx (xc2(U )Ux ) + c2(U )Ux

≡ Dt (xUt ) − Dx

(
xc2(U )Ux −

∫
c2(U )dU

)
,

(4.4)

and thus the corresponding conservation law is given by

Dt (xut ) − Dx

(
xc2(u)ux −

∫
c2(u)du

)
= 0. (4.5)

Similarly, for the multiplier �(3) = t , one finds the corresponding conservation law

Dt (tut − u) − Dx (tc
2(u)ux ) = 0. (4.6)

To find the flux and density of the somewhat more complicated fourth conservation law of PDE (4.1) following
from the multiplier �(4) = xt , one needs to solve the flux-density determining equation

�(4)[U ]R[U ] = xt (Dt (Ut ) − Dx (c
2(U )Ux )) ≡ Dt�[U ] + Dx�[U ]. (4.7)

Since the left-hand side of (4.7) is linear in the highest derivatives Utt and Uxx , one can assume that �[U ] =
�(x, t, U, Ux , Ut ) and �[U ] = �(x, t, U, Ux , Ut ). Expanding both sides of (4.7), one obtains

xt (Utt − 2c(U )c′(U )(Ux )
2 − c2(U )Uxx )

= (
�t + �U Ut + �Ut Utt + �Ux Uxt

) + (
�x + �U Ux + �Ut Uxt + �Ux Uxx

)
.

(4.8)

Matching the terms of the highest order derivatives Utt , Uxx and Uxt , one finds that

xt = �Ut , −xtc2(U ) = �Ux , �Ux = −�Ut . (4.9)

The third equation in (4.9) can be replaced by �Ux = �Ut = 0, since other choices lead to equivalent conservation
laws. The first two equations in (4.9) yield

�[U ] = xtUt + α(x, t, U ), �[U ] = −xtc2(U )Ux + β(x, t, U ), (4.10)

for arbitrary α(x, t, U ), β(x, t, U ). Substituting (4.10) in the determining equations in (4.8) and setting to zero
coefficients of first-order partial derivatives of U , one finds

x = −αU , tc2(U ) = βU , αt = −βx .

Therefore

α(x, t, U ) = −xU + α̃(x, t), β(x, t, U ) = t
∫

c2(U )dU + β̃(x, t), α̃t = −β̃x .

It is evident that any choice of α̃ and β̃ satisfying α̃t = −β̃x yields an equivalent conservation law, with the simplest
one having α̃ = β̃ = 0. Thus, the fourth conservation law of PDE (4.1) is given by

Dt (xtut − xu) − Dx

(
xtc2(u)ux − t

∫
c2(u)du

)
= 0. (4.11)
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4.2 The first homotopy formula

In the case of complicated forms of multipliers and/or equations, for the inversion of divergence operators, one can
use homotopy operators that arise in differential geometry and reduce the problem of finding fluxes to a problem
of integration in single-variable calculus. In this section, we present the first set of such formulas, following [19].

Definition 9 The n-dimensional higher Euler operator with respect to a function U (x1, . . . , xn) is given by

E(s1,...,sn)
U =

∞∑
k1=s1

. . .

∞∑
kn=sn

(
k1

s1

)
. . .

(
kn

sn

)
Dk1−s1

1 . . . Dkn−sn
n

∂

∂U (k1+···+kn)
, (4.12)

where one denotes

U (k1+···+kn) = ∂k1+···+kn U

∂k1 x1 . . . ∂kn xn
.

Note that E(0,0)
U = EU is the usual Euler operator (2.5) with respect to U .

Definition 10 Let x = (x1, . . . , xn) and U = (U 1(x), . . . , U m(x)). For an expression f [U ] = f (x, U, ∂U, . . .),
the n-dimensional homotopy operator is defined through its n components corresponding to n respective independent
variables xi , i = 1, . . . , n, as follows:

H(xi )( f [U ]) =
∫ 1

0

m∑
j=1

I(xi )
j ( f [Û ])

∣∣∣
Û=λU

dλ

λ
, (4.13)

with

I(xi )
j ( f [Û ]) =

∞∑
s1=0

. . .

∞∑
sn=0

(
1 + si

1 + s1 + · · · + sn

)
Ds1

1 . . . Dsn
n

(
Û j E(s1,...,si−1, 1+si , si+1,...,sn)

Û j ( f [Û ])
)

,

j = 1, . . . , m. (4.14)

The following theorem holds [19].

Theorem 4 Suppose f [U ] is a divergence expression

f [U ] = div �[U ] = D1�
1[U ] + · · · + Dn�n[U ],

and f [0] = 0. Then the fluxes �i [U ] are given by

�i [U ] = H(xi )( f [U ]), i = 1, . . . , n. (4.15)

up to corresponding fluxes of a trivial conservation law, provided that the integrals (4.13) converge.

Two examples of the use of the first homotopy formula are now considered. Further examples are found in Sect. 6.

4.2.1 Example 1

As a first example, consider the Korteweg–de Vries (KdV) equation,

ut + uux + uxxx = 0. (4.16)

One can show that PDE (4.16) has a local conservation law arising from the multiplier �[U ] = U , i.e.,

f [U ] = U (Ut + UUx + Uxxx ) ≡ Dt�[U ] + Dx�[U ].
is a divergence expression. We now reconstruct the corresponding density �[U ] and flux �[U ]. First compute
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I (t)( f [Û ]) = D0
t D0

x

(
ÛE(1,0)

Û
( f [Û ])

)
= Û 2,

I (x)( f [Û ]) = D0
t D2

x

(
ÛE(0,3)

Û
( f [Û ])

)
+ D0

t D1
x

(
ÛE(0,2)

Û
( f [Û ])

)
+ D0

t D0
x

(
ÛE(0,1)

Û
( f [Û ])

)

= Û 3 − Û 2
x + 2ÛÛxx .

Consequently,

H(t)( f [U ]) =
∫ 1

0
(λU )2 dλ

λ
= 1

2U 2,

H(x)( f [U ]) =
∫ 1

0

(
λ3U 3 − λ2U 2

x + 2λ2UUxx

) dλ

λ
= 1

3U 3 − 1
2U 2

x + UUxx ,

The corresponding conservation law is given by

Dt

(
1
2 u2

)
+ Dx

(
1
3 u3 − 1

2 u2
x + uuxx

)
= 0. (4.17)

4.2.2 Example 2

Consider the 2-dimensional G-equation

R[g] = gt − | grad g| ≡ gt −
√

g2
x + g2

y = 0, (4.18)

which describes flame propagation in a static gas (see, e.g., [28]). Here g(t, x, y) = 0 implicitly defines the
position of the flame surface at time t , and the surface advances at a constant speed in the normal direction. Let
(x1, x2) = (x, y). In particular, one can show that the PDE (4.18) has the following multipliers of conservation
laws:

�(1)[G] = 1

G3
y
(Gx G yy − G yGxy), �(2)[G] = H(Gx , G y)(Gxx G yy − G2

xy), (4.19)

where H(Gx , G y) is an arbitrary function. For more details, see [29].
First consider the multiplier �(1)[G] in (4.19). From (4.14), one obtains

I(t)(�(1)[G]R[G]) = G

G3
x
(Gx Gxy − G yGxx ),

which is an invariant expression under the transformation Û = λU . The same is true about expressions
I(x)(�(1)[G]R[G]) and I(y)(�(1)[G]R[G]). Hence the integral homotopy operators (4.13) yield a divergent integral∫ 1

0 dλ/λ.
Second, consider the multiplier �(2)[G] in (4.19). Since the corresponding divergence expression

f [G] = �(2)[G]R[G] = H(Gx , G y)(Gt −
√

G2
x + G2

y)(Gxx G yy − G2
xy)

contains an arbitrary function H(Gx , G y), the corresponding integrals (4.13) cannot yield closed-form expressions.
It follows that the present flux construction method cannot be used for either of the multipliers (4.19) of the

G-equation (4.18).

4.3 The second homotopy formula

An alternative set of integral formulas for fluxes of local conservation laws was developed by Bluman and Anco
[17]. Here we present these formulas in a different form, which is symmetric with respect to independent variables,
and also is simpler for practical computations and software implementation.

It takes a somewhat bigger effort to implement the current method in symbolic computation software than to
implement the method presented in Sect. 4.2. However, the formulas given in the current section have two important
practical advantages over the ones presented in Sect. 4.2.
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(i) They can be applied to divergence expressions f [U ] with f [0] �= 0.
(ii) They have flexibility that can be used to always avoid divergent integrals.

The following theorem holds.

Theorem 5 Suppose a PDE system (2.1) has a local conservation law arising from a set of multipliers {�σ [U ]}N
σ=1,

i.e., (3.2) holds. Then the fluxes {�i [U ]}N
i=1 of that conservation law are given by

�i [U ] = �i [Ũ ] +
∫ 1

0

(
Si [

U − Ũ ,�[λU + (1 − λ)Ũ ]; R[λU + (1 − λ)Ũ ]]

+ S̃i [
U − Ũ , R[λU + (1 − λ)Ũ ];�[λU + (1 − λ)Ũ ]]

)
dλ, i = 1, . . . , n, (4.20)

up to fluxes of a trivial conservation law. In (4.20), operators Si , S̃i are defined by their action on arbitrary functions
V = (V 1(x), . . . , V m(x)), W = (W1(x), . . . , WN (x)), Ṽ = (Ṽ 1(x), . . . , Ṽ m(x)) and W̃ = (W̃1(x), . . . , W̃N (x))

as follows:

Si [V, W ; R[U ]] =
k−1∑
p=0

k−p−1∑
q=0

(−1)q (
Di1 . . . Di p V ρ

)
D j1 . . . D jq

(
Wσ

∂ Rσ [U ]
∂Uρ

j1... jq i i1...i p

)
, (4.21)

S̃i [Ṽ , W̃ ;�[U ]] =
l−1∑
p=0

l−p−1∑
q=0

(−1)q (
Di1 . . . Di p Ṽ ρ

)
D j1 . . . D jq

(
W̃ σ ∂�σ [U ]

∂Uρ
j1... jq i i1...i p

)
, (4.22)

where k is the order of the given PDE system R{x ; u} (2.1), l is the maximal order of the derivatives appearing in
the multipliers {�σ [U ]}N

σ=1, and j1 · · · jq , i1 · · · i p are ordered combinations of indices such that 1 ≤ j1 ≤ · · · ≤
jq ≤ i ≤ i1 ≤ . . . ≤ i p ≤ n.

In (4.20), Ũ = Ũ (x) is an arbitrary fixed function, and �i [Ũ ] are quantities satisfying

Di�
i [Ũ ] = �σ [Ũ ]Rσ [Ũ ] =: F(x). (4.23)

The proof of Theorem 5 is presented in Appendix A.
In (4.20), Ũ is an arbitrary function of x , chosen so that the integral (4.20) converges. Different choices of Ũ

yield fluxes of equivalent conservation laws. One normally chooses Ũ = 0 (provided that the integral converges).
Once Ũ = Ũ (x) has been chosen, the functions {�i [Ũ ]}N

i=1 can be found by direct integration from the divergence
relation (4.23) by integrating F(x). For example, one can choose

�1[Ũ ] =
∫

F(x)dx1,�2[Ũ ] = · · · = �n[Ũ ] = 0.

It is important that, unlike the case with the first homotopy formula (Sect. 4.2), the proof of Theorem 5 does not
require that the divergence expression �σ [U ]Rσ [U ] vanishes for U = 0. The formula (4.20) is useful in many
practical situations when the integrals can be explicitly evaluated.

Two examples of the use of the second homotopy formula are now considered; further examples are found in
Sect. 6.

4.3.1 Example 1

As a first example, consider again the KdV equation (4.16) with multiplier �[U ] = U . Using Ũ = 0, one finds
�1[0] = �2[0] = 0, and hence the formulas (4.20) yield exactly the same fluxes as the first homotopy method
(Sect. 4.2), i.e., the conservation law (4.17).

Alternatively, using Ũ = x , one finds �1[Ũ ] = t x2,�2[Ũ ] = 0, and hence

�1[U ] = t x2 + 1
2 (U 2 − x2),

�2[U ] = 1
2 − 1

3 x3 + 1
3U 3 − 1

2U 2
x + UUxx ,

which are a density and a flux of a conservation law equivalent to (4.17).
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4.3.2 Example 2

Consider the two-dimensional G-equation (4.18) and its local conservation-law multipliers (4.19). For the multiplier
�(1)[G], it again yields a divergent integral when Ũ = 0. The singularity can be removed by taking e.g. Ũ = x ;
however, even this simple choice leads to an integral with a highly complicated integrand. For the multiplier �(2)[G]
involving an arbitrary function, formulas (4.20) do not yield a closed-form expression.

4.4 Computation of fluxes of conservation laws of scaling-invariant PDE systems

Consider a PDE system that has a scaling symmetry

Xs[u] = p(i)xi ∂

∂xi
+ q(ρ)uρ ∂

∂uρ
, (4.24)

where p(i) and q(ρ) are constant scaling weights of independent and dependent variables, respectively, i.e., the
generator (4.24) corresponds to the global transformation group

xi → x̃ i = eεXs [u]xi = eεp(i)
xi ,

uρ → ũρ = eεXs [u]uρ = eεq(ρ)

uρ.

The scaling symmetry generator (4.24) can be written in evolutionary form as

X̂s[u] = η̂[u] ∂

∂uρ
=

(
q(ρ)uρ − p(i)xi uρ

i

) ∂

∂uρ
. (4.25)

Assuming that the given PDE system can be written in a solved form (2.2), we first note that the scaling homogeneity
of each PDE of the given system follows from considering the action of the scaling symmetry (4.24) on the leading
derivative in each Rσ [u]. In particular, one has

X(k)
s [U ]Rσ [U ] = r (σ ) Rσ [U ],

where r (σ ) = const is the scaling weight of each PDE Rσ [U ].
Now suppose the given PDE system (2.2) has a conservation law

�σ [u]Rσ [u] = Di�
i [u] = 0, (4.26)

with fluxes �i [U ] = �i (x, U, ∂U, . . . , ∂ lU ). Suppose that this conservation law is scaling-invariant, and moreover,
homogeneous under the scaling symmetry (4.24), i.e.,

X(l)
s [U ]Di�

i [U ] = PDi�
i [U ], (4.27)

where X(l)
s is a corresponding prolongation of the scaling symmetry generator (4.24), and P = const is a scaling

weight of the conservation law.
Then one can show [21] that each of the multipliers �σ [U ] appearing in (4.26) is homogeneous under the scaling

symmetry (4.24). In particular, X(l)
s [U ]�σ [U ] = s(σ )�σ [U ], where s(σ ) = P − r (σ ) is the scaling weight of each

�σ [U ] �= 0.

Definition 11 A conservation law (4.26) invariant with respect to a scaling symmetry Xs[u] (4.24) is called non-
critical with respect to Xs[u] if

χ = s(σ ) + r (σ ) +
n∑

i=1

p(i) �= 0 (4.28)

for each σ such that �σ [U ] �= 0.
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4.4.1 The formula for fluxes

It follows that fluxes of noncritical homogeneously scaling conservation laws of scaling-invariant PDE systems can
be found through a simple formula that involves no integration! The following theorem holds [20,21].

Theorem 6 Suppose the PDE system in the solved form (2.2) has a scaling symmetry (4.25), and a conservation
law (2.6), which is homogeneous under the scaling symmetry (4.24), and is noncritical with respect to it. Then the
fluxes �i [U ] of such conservation law are given by

�i [U ] =
k−1∑
p=0

k−p−1∑
q=0

(−1)q (
Di1 . . . Di p η̂

ρ
)

D j1 . . . D jq

(
�σ [U ] ∂ Rσ [U ]

∂Uρ
j1... jq i i1...i p

)
, (4.29)

up to fluxes of a trivial conservation law. In (4.29), k is the maximal order of derivatives appearing in the PDE
system (2.1), l is the maximal order of derivatives appearing in the multipliers {�σ [U ]}N

σ=1, and j1 . . . jq and
i1 . . . i p are ordered combinations of indices such that 1 ≤ j1 ≤ · · · ≤ jq ≤ i ≤ i1 ≤ · · · ≤ i p ≤ n.

Remark 1 From the proof of Theorem 6 it follows that the formulas (4.29) does not yield fluxes of critical con-
servation laws. In particular, for critical conservation laws, formulas (4.29) yield fluxes of trivial conservation
laws.

In practice, if a PDE system has two or more scaling symmetries, it can be the case that a particular conservation
law is critical with respect to one scaling and noncritical with respect to the other, as is the case in Example 2 below.

Remark 2 For first- and second-order PDE systems, the flux formula (4.29) takes a particularly simple form [20].
For second-order PDE systems, it becomes

�i [U ] = η̂ρ[U ]�σ [U ]∂ Rσ [U ]
∂uρ

i

+ (Ds η̂
ρ[U ])�σ [U ]∂ Rσ [U ]

∂uρ
is

− η̂ρ[U ]D j

(
�σ [U ]∂ Rσ [U ]

∂uρ
j i

)
, (4.30)

where the summation is taken over repeated indices satisfying s ≥ i and j ≤ i . For first-order PDE systems, it
further reduces to

�i [U ] = η̂ρ[U ]�σ [U ]∂ Rσ [U ]
∂uρ

i

. (4.31)

Remark 3 In general, one can obtain fluxes of conservation laws using formula (4.29) not only for scaling symme-
tries, but for any pair consisting of a local symmetry X̂s[u] = η̂[u] ∂

∂uρ (in the evolutionary form) and a set of local
conservation-law multipliers {�σ [U ]}N

σ=1. Details are given in Appendix B (see also [16,21]).

4.4.2 Example 1

As a first example, we consider again the KdV equation (4.16) with multiplier �[U ] = U . The PDE (4.16) has a
scaling symmetry

Xs[u] = x
∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u
. (4.32)

Using the formula (4.29) with (x1, x2) = (t, x), one obtains the density and the flux

�1[U ] = (2U + 3tUt + xUx )U,

�2[U ] = U (3tUtxx + xUxxx ) − 3tUxUtx + 3(2U + tUt )Ux x + U 2(2U + 3tUt ) + Ux (xU 2 − 3Ux ),

i.e., a conservation law

Dt ((2u + 3tut + xux )u) + Dx (u(3tutxx + xuxxx ) − 3tux utx

+3(2u + tut )ux x + u2(2u + 3tut ) + ux (xu2 − 3ux )
)

= 0, (4.33)

equivalent to the conservation law (4.17).
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4.4.3 Example 2

Consider the two-dimensional G-equation (4.18) and its local conservation-law multipliers (4.19). The G-equation
(4.18) is a first-order PDE with obvious scaling symmetries

X1 = g
∂

∂g
, X2 = t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
. (4.34)

Denoting (x1, x2, x3) ≡ (t, x, y), for X1, one has q = 1, p(1) = p(2) = p(3) = 0; for X2, q = 0, p(1) = p(2) =
p(3) = 1.

Consider the conservation of the G-equation (4.18) law with multiplier �(1)[G] = 1
G3

y
(Gx G yy −G yGxy) (4.19).

The function �(1)[G] is evidently homogeneous under both symmetries X1 and X2 (4.34), with respective scaling
weights s1 = −1 and s2 = 0. The corresponding scaling weights of the G-equation (4.18) are r1 = 1 and r2 = −1.

Using Definition 11, one finds χ1 = −1 + 1 = 0, and χ2 = 0 − 1 + 3 = 2, hence the conservation law with
multiplier �(1)[G] is critical with respect to the scaling symmetry X1 and noncritical with respect to X2. Indeed,
one can directly check that the conservation law obtained by formulas (4.29) using the symmetry X1,

Dt

(
g�(1)[g]

)
− Dx

⎛
⎝ggx�

(1)[g]√
g2

x + g2
y

⎞
⎠ − Dy

⎛
⎝ggy�

(1)[g]√
g2

x + g2
y

⎞
⎠ = 0,

is trivial. The correct conservation-law fluxes corresponding to the multiplier �(1)[G] can be found using the
symmetry X2; such conservation law is given by

Dt

(
η̂[g]�(1)[g]

)
− Dx

⎛
⎝ η̂[g]gx�

(1)[g]√
g2

x + g2
y

⎞
⎠ − Dy

⎛
⎝ η̂[g]gy�

(1)[g]√
g2

x + g2
y

⎞
⎠ = 0, η̂[g] = −tgt − xgx − ygy . (4.35)

5 Comparison of the four flux-computation methods

In Table 1, we briefly outline the characteristics of the four methods of flux computation discussed above.
One can see that there is no “preferred” method of finding fluxes that is simple to use and sufficiently general

to be recommended for a generic conservation law of a nonlinear PDE system. The following observations and
recommendations are based on the author’s experience.

• If a given PDE system and multipliers do not involve arbitrary functions, one usually uses one of the two integral
methods. Though the second integral method is more general, the first one is also sometimes used because it can
yield simpler flux expressions.

Table 1 Comparison of four methods of flux computation of Sect. 4

Method Applicability Computational complexity

Direct (Sect. 4.1) Simpler multipliers/PDE systems, which may involve arbitrary
functions

Solution of an overdetermined
linear PDE system for fluxes

Homotopy 1 (Sect. 4.2) Complicated multipliers/PDEs, not involving arbitrary functions
The divergence expression must vanish for U = 0
For some conservation laws, this method can yield divergent integrals

One-dimensional integration

Homotopy 2 (Sect. 4.3) Complicated multipliers/PDEs, not involving arbitrary functions One-dimensional integration
Scaling symmetry
(Sect. 4.4)

Complicated multipliers/PDEs, may involve arbitrary functions
Scaling-homogeneous PDEs and multipliers.
Noncritical conservation laws

Repeated differentiation
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• If a given PDE system and/or multipliers are not very complicated but involve arbitrary constitutive functions,
one normally attempts the direct method of flux computation.

• When a given PDE system is scaling-invariant and the conservation law is scaling-homogeneous, the scaling
symmetry method is the method of choice, since it involves the simplest computations. (However, as seen in the
KdV example (4.33), when some p(i) �= 0, the densities and fluxes computed through the fourth method can
contain multiple unnecessary terms corresponding to trivial conservation laws.)

• Another instance when one needs to use the fourth method is the case of complicated scaling-homogeneous
PDEs and/or multipliers involving arbitrary functions. In this situation, the scaling symmetry method is the only
systematic method available.

In the following Sect. 5, we consider a software implementation of the four above-discussed flux computation
methods, applied to several practical examples.

6 Symbolic software implementation of flux computation methods. Examples

The direct method of construction of conservation laws (Sect. 3.1) is algorithmic and has been implemented in
symbolic software.1 Here we discuss its Maple implementation in the symbolic package GeM [22] written by the
author. The package GeM also contains routines for the four methods of flux reconstruction considered in this paper.

6.1 General conservation laws of the nonlinear wave equation

Here we seek local conservation laws for the nonlinear wave equation (4.1) arising from the multipliers of the form
�[U ] = �(x, t, U ) for an arbitrary c(u).

One defines the variables and the PDE (4.1) in GeM using the following Maple commands:

with(GeM) :
gem_decl_vars(indeps = [x,t],deps = [U(x,t)],freefunc = [C(U(x,t)));
gem_decl_eqs([diff(U(x,t),t,t) = diff(C(U(x,t))2 ∗ diff(U(x,t),x),x)], (6.1)

solve_for = [diff(U(x,t),t,t)]);
The option solve_for is used to specify a set of leading derivatives the given PDE systems can be solved for.
Note that the direct method of conservation-law computation does not require the equations to be written in the
solved form, and therefore the specification of the option solve_for is not necessary. However, in (6.1), this
option solve_for was specified, since it will be used later in the flux-computation routine, which automatically
verifies the correctness of flux computations; this is accomplished by explicitly checking that the conservation-law
divergence expression vanishes on solutions U (x) = u(x) of the given PDE (4.1).

The set of determining equations for the local conservation-law multipliers is obtained and simplified using the
routines

det_eqs := gem_conslaw_det_eqs([x,t,U(x,t)]) :
CL_multipliers := gem_conslaw_multipliers(); (6.2)

simplified_eqs := DEtools[rifsimp](det_eqs,

CL_multipliers,mindim = 1,arbitrary = [C(U)]);
The first command in (6.2) sets up the set of local conservation-law multipliers determining (3.4), and splits them.
The splitting is done using the fact that the determining equations (3.4) are polynomial expressions in terms of

1 In particular, in the software by [23] written for the REDUCE computer-algebra system.
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derivatives U of orders four and higher, and such derivatives are linearly independent. This yields an overdeter-
mined system of seven determining equations for the unknown local multiplier �[U ]. After using the rif reduction
algorithm, the system reduces to three PDEs

∂2�[U ]
∂x2 = ∂2�[U ]

∂t2 = ∂�[U ]
∂U

= 0.

The four obvious linearly independent solutions of these determining equations can be obtained using the com-
mand

multipliers_sol := pdsolve(simplified_eqs[Solved]);
and are given by

�[U ] = C1 + C2x + C3t + C4t x,

where C1, . . . , C4 are arbitrary constants.
Finally, we apply the direct method of flux computation (Sect. 4.1), using the command

gem_get_CL_fluxes(Lam_sol,method = “Direct”);
which generates the divergence expressions of the four conservation laws (4.3), (4.5), (4.6) and (4.11).

6.2 The first four conservation laws of the KdV equation

As is well-known, the KdV equation (4.16) has an infinite countable sequence of local conservation laws of increas-
ing orders. Here we compute the first four of these conservation laws, by limiting the multiplier dependence, as
follows:

�[U ] = �(t, x, U, Ux , Uxx ).

The variables and the PDE (4.16) are defined using the commands

with(GeM) :
gem_decl_vars(indeps = [x,t],deps = [U(x,t)]);
gem_decl_eqs([diff(U(x,t),t) = U(x,t) ∗ diff(U(x,t),x) + diff(U(x,t),x,x,x)], (6.3)

solve_for = [diff(U(x,t),t)]);
The set of determining equations for the multipliers is obtained and simplified using the routines

det_eqs := gem_conslaw_det_eqs([x,t,U(x,t),diff(U(x,t),x),

diff(U(x,t),x,x)]) :
CL_multipliers := gem_conslaw_multipliers(); (6.4)

simplified_eqs := DEtools[rifsimp](det_eqs,CL_multipliers,mindim = 1);
and is solved using the Maple command

multipliers_sol := pdsolve(simplified_eqs[Solved]);
to yield the four local multipliers

�[U ] = C1 + C2U + C3(x − tU ) + C4

(
1
2U 2 + Uxx

)
, (6.5)

where C1, . . . , C4 are arbitrary constants.
We now reconstruct the fluxes.
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6.2.1 The first homotopy formula

Using the command

gem_get_CL_fluxes(Lam_sol,method = “Homotopy1”); (6.6)

we call the routine for the first homotopy method described in Sect. 4.2. It yields the conservation laws

Dt (u) + Dx

(
1

2
u2 + uxx

)
= 0,

Dt

(
1

2
u2

)
+ Dx

(
1

3
u3 − 1

2
u2

x + uuxx

)
= 0,

(6.7)

Dt

(
xu − 1

2
tu2

)
+ Dx

(
−1

3
tu3 + 1

2
(xu2 + tu2

x ) − ux + (x − tu)uxx

)
= 0,

Dt

(
1

6
u3 + 1

2
uuxx

)
+ Dx

(
1

8
u4 + 1

2
(ut ux − uutx + u2uxx + u2

xx )

)
= 0.

6.2.2 The second homotopy formula.

The corresponding routine for the method described in Sect. 4.3 is called as follows

gem_get_CL_fluxes(Lam_sol,method = “Homotopy2”);
and yields the four divergence expressions in the same form as in (6.7). By default, the arbitrary function Ũ = 0 is
used. One can override this setting and use, e.g., Ũ = x , by using an option, as follows:

gem_get_CL_fluxes(Lam_sol,method = “Homotopy2”,arb_func_Homotopy2 = {U = x});
which yield four conservation laws equivalent to the ones given in (6.7), but having somewhat more complicated
fluxes:

Dt (x(t − 1) + u) + Dx

(
1

2
(u2 − x2) + uxx

)
= 0,

Dt

(
t x2 + 1

2 (u2 − x2)
)

+ Dx

(
1
2 − 1

3 x3 + 1
3 u3 − 1

2 u2
x + uuxx

)
= 0,

Dt

(
1

2
x2(3t − t2 − 2) + xu − 1

2
tu2

)

+ Dx

(
1 + t

(
1

3
x3 − 1

2

)
− 1

2
x2 − 1

3
tu3 + 1

2
(xu2 + tu2

x ) − ux + (x − tu)uxx

)
= 0, (6.8)

Dt

(
1

6
x3(3t − 1) + 1

6
u3 + 1

2
(u − x)uxx

)

+ Dx

(
1

8
(u4 − x4) + 1

2
(ut (ux − 1) − (u − x)utx + u2uxx + u2

xx )

)
= 0.

The above example illustrates that normally, to obtain simpler flux expressions, one should choose Ũ = 0, unless
integrals in the formula (4.20) diverge.

6.2.3 The scaling symmetry formula.

We now reconstruct the conservation laws of the KdV equation (4.16) arising from local multipliers (6.5) using the
scaling symmetry method (Sect. 4.4) with the scaling symmetry (4.32). In the corresponding routine, we need to
specify the point symmetry (4.32) in the standard form:

gem_get_CL_fluxes(Lam_sol,method = “Scaling”,

symmetry = {xi_x = x,xi_t = 3 ∗ t,eta_U = −2 ∗ U});
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This yields the following four conservation-law expressions

Dt (2u + 3tut + xux ) + Dx

(
2u2 + 3tuut + xuux + 4uxx + 3tutxx + xuxxx

)
= 0,

Dt ((2u + 3tut + xux )u) + Dx (u(3tutxx + xuxxx ) − 3tux utx

+ 3(2u + tut )ux x + u2(2u + 3tut ) + ux (xu2 − 3ux )
)

= 0,

Dt ((2u + 3tut + xux )(x − tu))

+ Dx

(
3tu2

x + 2u2(x − tu) + [xu(x − tu) − 3]ux + 3tu(x − tu)ut + 3t (tux − 1)utx (6.9)

− 3(2ut + t2ut − x)uxx + (x − ut)(xuxxx + 3tutxx

)
= 0,

Dt

(
(2u + 3tut + xux )

(
1

2
u2 + uxx

))

+ Dx

(
1

2
u3(xux + 3tut ) + u2

x (3tut + xux − u) + u4 − 3tuux utx

+ u[xux + 6(tut + u)]uxx + 4u2
xx + 3

2
t (u2 + 2uxx )utxx

+
[

1

2
xu2 − 3(tutx + ux )

]
uxxx + (3tut + xux + 2u)uxxxx

)
= 0,

equivalent to the sets of conservation laws (6.7) and (6.8) but having significantly more complicated forms of fluxes
and densities.

7 Conclusion

The direct method for constructing conservation laws is a systematic procedure applicable to all PDEs and PDE
systems involving sufficiently smooth functions. The direct method builds on ideas present in the famous Noether’s
Theorem, in particular, the use of Euler differential operators, which identically annihilate any divergence expres-
sion. However, unlike Noether’s Theorem, the direct method is not limited to PDE systems arising from some
variational principle (i.e., self-adjoint PDE systems).

Within the direct method, one seeks multipliers, such that a linear combination of the PDEs of the system taken
with these multipliers yields a divergence expression. Importantly, for PDE systems that can be written in a solved
form (2.2), the direct method is complete, since for such systems all conservation laws arise as linear combinations
of equations of the system.

Determining equations for unknown multipliers are obtained from the action of Euler differential operators on
a linear combination of the PDEs of a given system, and are in many ways similar to local-symmetry-determining
equations.

We note that the direct method can be applied without modification to ODEs and ODE systems, yielding their
integrating factors and first integrals.

After the multipliers have been computed, fluxes of the corresponding divergence expression can be reconstructed
using different approaches. Each approach can be better in one particular situation and worse or non-applicable in
another (Sect. 5).

The algorithms for the direct method and the flux reconstruction have been implemented in the symbolic package
GeM in Maple, which was used to illustrate the four methods presented in the present paper.

Acknowledgements The author is grateful to George Bluman and Stephen Anco for many discussions, to anonymous referees for
useful suggestions, and to the University of Saskatchewan and the National Sciences and Engineering Research Council of Canada for
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Appendix A

Proof of Theorem 5

Proof We start with a set of local conservation-law multipliers {�σ [U ]}N
σ=1 of a given PDE system (2.1). These

multipliers satisfy (3.1).
The linearizing operator associated with the PDE system (2.1) is given by

(LR)σρ [U ]V ρ =
[

∂ Rσ [U ]
∂Uρ

+ ∂ Rσ [U ]
∂Uρ

i

Di + · · · + ∂ Rσ [U ]
∂Uρ

i1...ik

Di1 . . . Dik

]
V ρ, σ = 1, . . . , N , (A.1)

and its adjoint by

(L∗
R)σρ [U ]Wσ = ∂ Rσ [U ]

∂Uρ
Wσ − Di

(
∂ Rσ [U ]

∂Uρ
i

Wσ

)
+ · · · + (−1)kDi1 . . . Dik

(
∂ Rσ [U ]
∂Uρ

i1...ik

Wσ

)
, ρ = 1, . . . , m,

(A.2)

acting, respectively, on arbitrary functions V = (V 1(x), . . . , V m(x)) and W = (W1(x), . . . , WN (x)).
For each multiplier, �σ [U ] = �σ (x, U, ∂U, . . . , ∂ lU ), introduce the corresponding linearizing operator

(L�)σρ[U ]Ṽ ρ =
[

∂�σ [U ]
∂Uρ

+ ∂�σ [U ]
∂Uρ

i

Di + · · · + ∂�σ [U ]
∂Uρ

i1...il

Di1 . . . Dil

]
Ṽ ρ, σ = 1, . . . , N , (A.3)

and its adjoint

(L∗
�)σρ[U ]W̃ σ = ∂�σ [U ]

∂Uρ
W̃ σ − Di

(
∂�σ [U ]

∂Uρ
i

W̃ σ

)
+ · · · + (−1)kDi1 . . . Dil

(
∂�σ [U ]
∂Uρ

i1...il

W̃ σ

)
, ρ = 1, . . . , m,

(A.4)

acting, respectively, on arbitrary functions Ṽ = (Ṽ 1(x), . . . , Ṽ m(x)) and W̃ = (W̃1(x), . . . , W̃N (x)).
It is straightforward to show that the operators (A.1–A.4) satisfy the following divergence identities:

Wσ (LR)σρ [U ]V ρ − V ρ(L∗
R)σρ [U ]Wσ ≡ Di Si [V, W ; R[U ]], (A.5)

W̃ σ (L�)σρ[U ]Ṽ ρ − Ṽ ρ(L∗
�)σρ[U ]W̃ σ ≡ Di S̃i [Ṽ , W̃ ;�[U ]], (A.6)

where the operators Si , S̃i are defined by (4.21) and (4.22).
To avoid the appearance of singular integrals, we need the following construction. Let

U(λ) ≡ U + (λ − 1)V, (A.7)

where U = (U 1(x), . . . , U m(x)) and V = V 1(x), . . . , V m(x)) are arbitrary functions, and λ is a scalar parameter.
Replacing U by U(λ) in the conservation-law identity (3.1), one has

∂

∂λ
(�σ [U(λ)]Rσ [U(λ)]) ≡ ∂

∂λ
Di�

i [U(λ)] = Di

(
∂

∂λ
�i [U(λ)]

)
. (A.8)

(The last identity holds since λ can be viewed as an additional independent variable.) The left-hand side of (A.8)
can then be expressed in terms of the linearizing operators (A.1) and (A.3) as follows:

∂

∂λ
(�σ [U(λ)]Rσ [U(λ)]) = �σ [U(λ)](LR)σρ [U(λ)]V ρ + Rσ [U(λ)](L�)σρ[U(λ)]V ρ.

From (A.5) and (A.6) with Wσ = �σ [U(λ)] and W̃ σ = Rσ [U(λ)], respectively, and using the property

(L∗
R)σρ [U ]�σ [U ] + (L∗

�)σ ρ Rσ [U ] = 0
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of the adjoint operators (A.2), (A.4), one can show that

∂

∂λ
(�σ [U(λ)]Rσ [U(λ)]) = V ρ(L∗

R)σρ [U(λ)]�σ [U(λ)] + Di Si [V,�[U(λ)]; R[U(λ)]]
+V ρ(L∗

�)σρ[U(λ)]Rσ [U(λ)] + Di S̃i [V, R[U(λ)];�[U(λ)]]
= Di

(
Si [V,�[U(λ)]; R[U(λ)]] + S̃i [V, R[U(λ)]�[U(λ)]]

)
. (A.9)

Comparing (A.8) and (A.9), one finds that

Di

(
∂

∂λ
�i [U(λ)]

)
= Di

(
Si [V,�[U(λ)]; R[U(λ)]] + S̃i [V, R[U(λ)];�[U(λ)]]

)
,

which implies

∂

∂λ
�i [U(λ)] = Si [V,�[U(λ)]; R[U(λ)]] + S̃i [V, R[U(λ)];�[U(λ)]], (A.10)

up to fluxes of a trivial conservation law. Now let V = U − Ũ , for an arbitrary function Ũ = (Ũ 1(x), . . . , Ũ m(x)).
Then U(λ) = λU + (1 − λ)Ũ . Integrating (A.10) with respect to λ from 0 to 1, one obtains the desired expression
(4.20). 	


Appendix B

Computation of fluxes of a conservation law from a symmetry/adjoint symmetry pair

Suppose a given PDE system (2.1) has a local symmetry with generator (in the characteristic form)

X̂ = η̂ρ[u] ∂

∂uρ
. (B.1)

The symmetry components η̂ρ[u] are solutions of the symmetry determining equations, i.e., the linearized system

Lσ
ρ [u]η̂ρ[u] = 0, (B.2)

with Lσ
ρ ≡ (LR)σρ given by (A.1).

Similarly, let {ωσ [u]}N
σ=1 be some solution of the adjoint linearized system

L∗ σ
ρ [u]ωσ [u] = 0, (B.3)

with L∗ σ
ρ ≡ (L∗

R)σρ given by (A.2). (Functions {ωσ [u]}N
σ=1 are often called adjoint symmetries).

The linearizing operator (A.1) and its adjoint (A.2) are related through a well-known formula [16]

Wσ Lσ
ρ [U ]V ρ − V ρL∗ σ

ρ [U ]Wσ ≡ Di�
i [U ] (B.4)

where � i [U ] are given by

� i [U ] =
k−1∑
p=0

k−p−1∑
q=0

(−1)q (
Di1 . . . Di p V ρ

)
D j1 . . . D jq

(
Wσ

∂ Rσ [U ]
∂Uρ

j1... jq i i1...i p

)
, (B.5)

where j1 . . . jq and i1 . . . i p are ordered combinations of indices such that 1 ≤ j1 ≤ · · · ≤ jq ≤ i ≤ i1 ≤ · · · ≤
i p ≤ n.

The following result is immediately obtained.

Theorem 7 For a given PDE system (2.1), let {η̂ρ[u]}m
ρ=1 be components of its local symmetry (B.1), and {ωσ [u]}N

σ=1
a solution of the adjoint linearized system (B.3). Then formulas (4.29) with V ρ = ηρ[U ] and Wσ = ωσ [U ] yield
fluxes of local conservation laws of the PDE system (2.1).
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The proof follows from noting that, for the symmetry/adjoint symmetry pair {η̂ρ[u]}m
ρ=1, {ωσ [u]}N

σ=1, using

V ρ = η̂ρ[u] and Wσ = ωσ [u] in formulas (B.4) yields Di�
i [u] = 0, which is a local conservation laws of the

PDE system (2.1).
The following remarks are important.

1. Since every set of local conservation law multipliers {�σ [U ]}N
σ=1 of a given PDE system (2.1) satisfies the

adjoint linearized equations of (B.3), it follows that in Theorem 7 one can use any local symmetry and any set of
local conservation law multipliers of a given PDE system to generate its local conservation law. (Note in some
cases, it is possible that a so generated conservation law is trivial.)

2. A conservation law with fluxes � i [U ] (4.29), obtained from a symmetry/multiplier pair using Theorem 7, is
generally inequivalent to the conservation law (3.2) with fluxes �i [U ], which corresponds to the multipliers
{�σ [U ]}N

σ=1. One obtains the fluxes corresponding to the multipliers only in the case of a scaling symmetry, as
discussed in Sect. 4.4.
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